
MSTCZJU GIP
Series No. 0, 4th Event

Introduction to Information Retrieval
Chapter 5, Index Compression

itsuhane@MSTCZJU
Nov. 22, 2008

Index Compression
ItIR C5

Benefit

• Less Space Cost

• Caching

• Less I/O

Less I/O

Motivator

• Caching - Prime Motivator

• Less I/O

• Less Space Cost

Terminology

• term, termID

• posting, docID

• dictionary

• posting list, postings

 0:(3, 5, 478, 1948, 1949, ... , 48683)
 1:(10, 67, 88, 321, 389, ... , 47373)
 2:(11, 506, 1430, 2159, 2550, ... , 48860)
 3:(21, 36, 188, 206, 480, ... , 48874)
 ...

 0 ↔ nanao_naru
 1 ↔ takeuchi_takashi
 2 ↔ carnelian
 3 ↔ suzuhira_hiro
 4 ↔ askray
 ...

Dictionary

Posting List

 0:(3, 5, 478, 1948, 1949, ... , 48683)
 1:(10, 67, 88, 321, 389, ... , 47373)
 2:(11, 506, 1430, 2159, 2550, ... , 48860)
 3:(21, 36, 188, 206, 480, ... , 48874)
 ...

 0 ↔ nanao naru
 1 ↔ takeuchi takashi
 2 ↔ carnelian
 3 ↔ suzuhira hiro
 4 ↔ askray
 ...

Dictionary

Posting List

termIDs

terms

postings
(docIDs)

Los?

• Lossy - Discards some Information

• MP3

• Hybrid - Preserves some, Redirect some

• WavPack

• Lossless - Preserves all Information

• Monkey’s Audio

Statistical Properties

How many terms?

• sometimes: certain size.

• OED: more than 600,000 words.

• Actually: ?

Actually

• OED discarded some meaningful words!

• PostgreSQL, setrlimit, BD5HLI, itsuhane

• toold, tooold, toooold, ...

• A lucky word: google

• A disgusting word: baidu

How many terms?

• sometimes: certain size.

• OED: more than 600,000 words.

• Actually: MANY MANY!

No. of Terms

• As collection size growing,
(known/concerned)vocabulary size grows.

M = kT b

Heaps’ Law

No. of TokensNo. of Terms

Heaps’ Law

Heaps’ Law

• Dictionary will grow.

• Space will not enough.

• Compress is necessary.

• There is no perfect hash!

Dist. of Terms

• Help characterize the compress algorithm

cfi ∝
1
i

Zipf’s Law

Zipf’s Law

• Frequency of appearance

• Convert postings to gaps

• cf[i] is not a constant

Dict. Compression

• Dictionary is growing...

• Dictionary is frequently used...

Simplest Scheme

• Sorted fixed-width entries

• fast for binary search

• but waste lot of space

• insert or remove terms is expensive

Simplest Scheme

• How to decide the width?

• 8? Too short:

• kumo_no_mukou_yakusoku_no_basho

• 32? Too long:

• ARIA

dictionary-as-a-string

• Store all the terms as a single string,
without spacing for alignment.

• Pointers indicates term start and end.

Preliminary draft (c) 2008 Cambridge UP

92 5 Index compression

. . . s y s t i l e s y z y g e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i n s z o n o . . .

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

→
→
→
→
→
. . .

4 bytes

term ptr.

3 bytes

. . .

! Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile, syzygetic and syzygial.

binary search in the (now smaller) table. This scheme saves us 60% compared
with fixed-width storage – 12 bytes on average of the 20 bytes we allocated
for terms before. However, we now also need to store term pointers. The
term pointers resolve 400,000× 8 = 3.2 × 106 positions, so they need to be
log2 3.2 × 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000× (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 MB to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (see Figure 5.5). We store the length of the term in the string as an
additional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k − 1) × 3 = 9 bytes for term pointers, but need an

dictionary-as-a-string

dictionary-as-a-string

• More natural in C-like programming.

• Use less space.

Blocked storage

• A variant of dictionary-as-a-string

• Group terms into blocks, each term is
represented in Pascal-strings

• A pointer for each block, but not term.

Preliminary draft (c) 2008 Cambridge UP

5.2 Dictionary compression 93

. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n . . .

freq.

9

92

5

71

12

. . .

postings ptr.

→
→
→
→
→
. . .

term ptr.

. . .

! Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths 7, 9, 8 and 6 characters, respectively.
Each term is preceded by a byte encoding its length that indicates how many bytes to
skip to reach subsequent terms.

additional k = 4 bytes for term lengths. So the total space requirements for
the dictionary of Reuters-RCV1 are reduced by 5 bytes per 4-term block, or a
total of 400,000× 1/4 × 5 = 0.5 MB bringing us down to 7.1 MB.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the
uncompressed dictionary by binary search (a). In the compressed dictionary,
we first locate the term’s block by binary search and then its position within
the list by linear search through the block (b). Searching the uncompressed
dictionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6
steps, assuming each term is equally likely to come up in a query. For exam-
ple, finding the two terms aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, approximately 25% more. For example, finding den takes
one binary search step and two steps through the block. By increasing k, we
can get the size of the compressed dictionary arbitrarily close to the mini-
mum of 400,000 × (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes pro-
hibitively slow for large values of k.

Blocked storage

Blocked storage

• Further compact.

• Need more time to lookup a term.

Front Coding

• (Blocked storage).upgrade();

dictionary-as-a-string

Blocked Storage Cursor List

Front Coding

Lazy Blocked Storage

More Considerations

Postings Compression

• Just because they are huge...

Thinking in Gaps

• The key point is to store postings by
recording the gaps, instead of using the
docID it self.

• For a “famous” term, gaps between two
occurrences is a relatively small number.

Thinking in Gaps

 0:(3, 5, 478, 1948, 1949, ... , 48683)
 1:(10, 67, 88, 321, 389, ... , 47373)
 2:(11, 506, 1430, 2159, 2550, ... , 48860)
 3:(21, 36, 188, 206, 480, ... , 48874)
 ...

 0:(3, 2, 473, 1470, 1, ...)
 1:(10, 57, 21, 233, 68, ...)
 2:(11, 495, 924, 729, 391, ...)
 3:(21, 15, 152, 18, 274, ...)
 ...

Thinking in Gaps

 ...
 19:(... , 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 7, 15)
 ...

Most frequently appeared

Thinking in Gaps

• The more times a code appears, it is more
expected to appear again.

H(P) = −
∑

x∈X

P (x) log2 P (x)

Entropy

H(P) = −
∑

x∈X

P (x) log2 P (x)

=
∑

x∈X

(− log2 P (x))P (x)

=
∑

x∈X

L(x)P (x)

= E(L)

Entropy

Entropy

• Information Theory suggest that if we could
encode X into a code space such that each
code for x is exactly of length L(x), then the
total encoded data length is the minimal
length, for which, the average code length is
expressed by H(P).

L(x) = − log2 P (x)

Entropy

• From L(x), we could derive out a
approximate solution: variable encoding.

• Frequent items are encoded into relatively
shorter codes.

Thinking in Gaps

• Relatively frequent gaps have smaller
values, and they should be encoded into
shorter codes.

Thinking in Gaps

• Rice

• Variable Byte Code

• Huffman Code

• γ-code

Rice

• 0 ↔ 0

• 1 ↔ 10

• 2 ↔ 110

• 3 ↔ 1110

• ...

Rice

• Larger gaps?

• 41732 ↔ 111...111...111...111...1110

• Fail...

Variable Byte Code

• Byte-scale compress

• Use leftmost bit as continue sign

Variable Byte Code

0000110100011000110001

10110001

00001100

00001101

Huffman Code

• Need to know the frequency distribution.

• Too complex to decompress on-the-air.

γ-code

• length(unary) + offset(biased)

γ-code
x length offset γ-code

0 - - -
1 0 / 0
2 10 0 10 0
5 110 01 110 01
10 1110 010 1110 010
29 11110 1011 11110 1011
60 111110 11100 111110 11100
99 1111110 100011 1111110 100011

γ-code

• Calculations?

Pitfall

• Boolean IR needs to merge postings by
docIDs, but not gaps...

• If the time consumed for restoring gaps
into docIDs is not important.
Why not use RLE?

Discussion Time

MSTCZJU GIP
Series No. 0, 4th Event

Introduction to Information Retrieval
Chapter 5, Index Compression

itsuhane@MSTCZJU
Nov. 22, 2008

