
MSTCZJU GIP
Series No. 0, 4th Event

Introduction to Information Retrieval
Chapter 5, Index Compression

itsuhane@MSTCZJU
Nov. 22, 2008



Index Compression
ItIR C5



Benefit

• Less Space Cost

• Caching

• Less I/O



Less I/O



Motivator

• Caching - Prime Motivator

• Less I/O

• Less Space Cost



Terminology

• term, termID

• posting, docID

• dictionary

• posting list, postings



 0:(  3,   5,  478, 1948, 1949, ... , 48683)
 1:( 10,  67,   88,  321,  389, ... , 47373)
 2:( 11, 506, 1430, 2159, 2550, ... , 48860)
 3:( 21,  36,  188,  206,  480, ... , 48874)
 ...

 0 ↔ nanao_naru
 1 ↔ takeuchi_takashi
 2 ↔ carnelian
 3 ↔ suzuhira_hiro
 4 ↔ askray
 ...

Dictionary

Posting List



 0:(  3,   5,  478, 1948, 1949, ... , 48683)
 1:( 10,  67,   88,  321,  389, ... , 47373)
 2:( 11, 506, 1430, 2159, 2550, ... , 48860)
 3:( 21,  36,  188,  206,  480, ... , 48874)
 ...

 0 ↔ nanao naru
 1 ↔ takeuchi takashi
 2 ↔ carnelian
 3 ↔ suzuhira hiro
 4 ↔ askray
 ...

Dictionary

Posting List

termIDs

terms

postings
(docIDs)



Los?

• Lossy - Discards some Information

• MP3

• Hybrid - Preserves some, Redirect some

• WavPack

• Lossless - Preserves all Information

• Monkey’s Audio



Statistical Properties



How many terms?

• sometimes: certain size.

• OED: more than 600,000 words.

• Actually: ?



Actually

• OED discarded some meaningful words!

• PostgreSQL, setrlimit, BD5HLI, itsuhane

• toold, tooold, toooold, ...

• A lucky word: google

• A disgusting word: baidu



How many terms?

• sometimes: certain size.

• OED: more than 600,000 words.

• Actually: MANY MANY!



No. of Terms

• As collection size growing,
(known/concerned)vocabulary size grows.



M = kT b

Heaps’ Law

No. of TokensNo. of Terms



Heaps’ Law



Heaps’ Law

• Dictionary will grow.

• Space will not enough.

• Compress is necessary.

• There is no perfect hash!



Dist. of Terms

• Help characterize the compress algorithm



cfi ∝
1
i

Zipf’s Law



Zipf’s Law

• Frequency of appearance

• Convert postings to gaps

• cf[i] is not a constant



Dict. Compression

• Dictionary is growing...

• Dictionary is frequently used...



Simplest Scheme

• Sorted fixed-width entries

• fast for binary search

• but waste lot of space

• insert or remove terms is expensive



Simplest Scheme

• How to decide the width?

• 8? Too short:

• kumo_no_mukou_yakusoku_no_basho

• 32? Too long:

• ARIA



dictionary-as-a-string

• Store all the terms as a single string, 
without spacing for alignment.

• Pointers indicates term start and end.
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! Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile, syzygetic and syzygial.

binary search in the (now smaller) table. This scheme saves us 60% compared
with fixed-width storage – 12 bytes on average of the 20 bytes we allocated
for terms before. However, we now also need to store term pointers. The
term pointers resolve 400,000× 8 = 3.2 × 106 positions, so they need to be
log2 3.2 × 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000× (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 MB to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (see Figure 5.5). We store the length of the term in the string as an
additional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k − 1) × 3 = 9 bytes for term pointers, but need an

dictionary-as-a-string



dictionary-as-a-string

• More natural in C-like programming.

• Use less space.



Blocked storage

• A variant of dictionary-as-a-string

• Group terms into blocks, each term is 
represented in Pascal-strings

• A pointer for each block, but not term.
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! Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths 7, 9, 8 and 6 characters, respectively.
Each term is preceded by a byte encoding its length that indicates how many bytes to
skip to reach subsequent terms.

additional k = 4 bytes for term lengths. So the total space requirements for
the dictionary of Reuters-RCV1 are reduced by 5 bytes per 4-term block, or a
total of 400,000× 1/4 × 5 = 0.5 MB bringing us down to 7.1 MB.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the
uncompressed dictionary by binary search (a). In the compressed dictionary,
we first locate the term’s block by binary search and then its position within
the list by linear search through the block (b). Searching the uncompressed
dictionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6
steps, assuming each term is equally likely to come up in a query. For exam-
ple, finding the two terms aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, approximately 25% more. For example, finding den takes
one binary search step and two steps through the block. By increasing k, we
can get the size of the compressed dictionary arbitrarily close to the mini-
mum of 400,000 × (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes pro-
hibitively slow for large values of k.

Blocked storage



Blocked storage

• Further compact.

• Need more time to lookup a term.



Front Coding

• (Blocked storage).upgrade();



dictionary-as-a-string

Blocked Storage Cursor List

Front Coding

Lazy Blocked Storage

More Considerations



Postings Compression

• Just because they are huge...



Thinking in Gaps

• The key point is to store postings by 
recording the gaps, instead of using the 
docID it self.

• For a “famous” term, gaps between two 
occurrences is a relatively small number.



Thinking in Gaps

 0:(    3,    5,  478, 1948, 1949, ... , 48683)
 1:(   10,   67,   88,  321,  389, ... , 47373)
 2:(   11,  506, 1430, 2159, 2550, ... , 48860)
 3:(   21,   36,  188,  206,  480, ... , 48874)
 ...

 0:(    3,    2,  473, 1470,    1, ... )
 1:(   10,   57,   21,  233,   68, ... )
 2:(   11,  495,  924,  729,  391, ... )
 3:(   21,   15,  152,   18,  274, ... )
 ...



Thinking in Gaps

 ...
 19:( ... , 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 7, 15)
 ...

Most frequently appeared



Thinking in Gaps

• The more times a code appears, it is more 
expected to appear again.



H(P ) = −
∑

x∈X

P (x) log2 P (x)

Entropy



H(P ) = −
∑

x∈X

P (x) log2 P (x)

=
∑

x∈X

(− log2 P (x))P (x)

=
∑

x∈X

L(x)P (x)

= E(L)

Entropy



Entropy

• Information Theory suggest that if we could 
encode X into a code space such that each 
code for x is exactly of length L(x), then the 
total encoded data length is the minimal 
length, for which, the average code length is 
expressed by H(P).

L(x) = − log2 P (x)



Entropy

• From L(x), we could derive out a 
approximate solution: variable encoding.

• Frequent items are encoded into relatively 
shorter codes.



Thinking in Gaps

• Relatively frequent gaps have smaller 
values, and they should be encoded into 
shorter codes.



Thinking in Gaps

• Rice

• Variable Byte Code

• Huffman Code

• γ-code



Rice

• 0 ↔ 0

• 1 ↔ 10

• 2 ↔ 110

• 3 ↔ 1110

• ...



Rice

• Larger gaps?

• 41732 ↔ 111...111...111...111...1110

• Fail...



Variable Byte Code

• Byte-scale compress

• Use leftmost bit as continue sign



Variable Byte Code

0000110100011000110001

10110001

00001100

00001101



Huffman Code

• Need to know the frequency distribution.

• Too complex to decompress on-the-air.



γ-code

• length(unary) + offset(biased)



γ-code
x length offset γ-code

0 - - -
1 0 / 0
2 10 0 10 0
5 110 01 110 01
10 1110 010 1110 010
29 11110 1011 11110 1011
60 111110 11100 111110 11100
99 1111110 100011 1111110 100011



γ-code

• Calculations?



Pitfall

• Boolean IR needs to merge postings by 
docIDs, but not gaps...



• If the time consumed for restoring gaps 
into docIDs is not important.
Why not use RLE?



Discussion Time
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