Categories

Calendar

August 2018
M T W T F S S
« Jun    
 12345
6789101112
13141516171819
20212223242526
2728293031  

拓扑空间的紧性

Klein Bottle

参加暑期讨论班其中有一场是我讲,第一次这样子讲数学的东西,有点紧张,于是先在这里整理一下。内容大致是拓扑空间的紧性。

关于空间的紧性,我们在之前的分析中已经见过了:例如在实数轴上的有界闭区间就是典型的紧集,紧集具有很多优良的性质,比如我们知道在有界闭区间上的连续函数一定是一致连续的,并且能取到最大值和最小值。所以,在将空间的概念推广到一般的拓扑空间之后,我们也希望将紧性这一优良性质也带到拓扑空间中来。为此,我们需要找到什么是紧集最本质的东西。在实数轴上的紧集 $K$,有如下的一些等价刻画:

$K$ 是有界闭集
$K$ 的任意无限子集必存在极限点
$K$ 中的任意序列必有收敛子列
$K$ 的任意开覆盖必有有限子覆盖

其中第一条无法在拓扑空间中使用,因为“有界”的概念无法定义。第二或者第三条曾经被认为是实质性的,但是后来由于 Tychonoff 定理,人们发现最后一条才是真正好的定义,因此将其作为拓扑空间紧性的定义,而第二条和第三条分别被叫做“极限点紧(Limit point compact)”和“序列紧(Sequencially compact)”。下面是正式内容,在给出定义之前,我先给出一个提纲:

首先当然是要给出拓扑空间紧性的定义。
接下来当然是会举一些例子,一方面是把枯燥的定义从抽象中拉回来,另一方面也是非常重要的是给出紧空间的存在性的证据,因为定义总是可以随便给的,这样子我可以给出具有任意优良性质的定义来,然而所定义的东西如果是不存在的话,相关的一切性质其实都是空谈。
然后我们将介绍从已有的紧空间构造新的紧空间的方法:包括集合的交、并、补,以及子空间、商空间和积空间——这一系列都是标准套路。在这里将会出现一个大定理,就是刚才提到的 Tychonoff 定理。
接下来将暂时中断一下,讨论一下稍微具体一点的度量空间中的紧性。因为度量空间更加具体一些,所以能得到的性质也更丰富一些。
最后我们将简要介绍一些将非紧空间(non-compact space)转化为紧空间(compactification,紧化)的初步知识。

啊,不过,由于一次报告是两个人一起讲的,这次我大致负责前半部分,因此从度量空间的紧性开始那部分内容就不列在这里了。