Categories

Calendar

August 2020
M T W T F S S
« Jun    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

如何生成随机数(上)

快三个月没有写日志了,大概是我开始认真写 blog 来第一次,也是因为发生了一些预料之外的事情,中断了许久,到后来又一直非常非常忙,不过我终于又爬上来冒个泡了,表明我还活着。

第二点要澄清的是,我这里并不是要讲“伪随机”、“真随机”这样的问题,而是关于如何生成服从某个概率分布的随机数(或者说 sample)的问题。比如,你想要从一个服从正态分布的随机变量得到 100 个样本,那么肯定抽到接近其均值的样本的概率要大许多,从而导致抽到的样本很多是集中在那附近的。当然,要解决这个问题,我们通常都假设我们已经有了一个生成 0 到 1 之间均匀分布的随机数的工具,就好像 random.org 给我们的结果那样,事实上许多时候我们也并不太关心它们是真随机数还是伪随机数,看起来差不多就行了。

现在再回到我们的问题,看起来似乎是很简单的,按照概率分布的话,只要在概率密度大的地方多抽一些样本不就行了吗?可是具体要怎么做呢?要真动起手来,似乎有不是那么直观了。实际上,这个问题曾经也是困扰了我很久,最近又被人问起,那我们不妨在这里一起来总结一下。为了避免一下子就陷入抽象的公式推导,那就还是从一个简单的具体例子出发好了,假设我们要抽样的概率分布其概率密度函数为 ,并且被限制在区间 上,如右上图所示。