Categories

Calendar

July 2017
M T W T F S S
« Jun    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

概率与测度 (4):闲扯大数定理与学习理论

本文属于概率与测度系列。

在本系列的上一篇文章中,我偷偷留了一个问题:为什么具体试验所得到的频率是趋向于该事件的概率的。这个问题似乎是显而易见的,但是仔细想想似乎也并不显然,并不能一下子得出这个结论来。事实上,历史上有以这个性质作为基础来构建概率论的理论体系的尝试,不过在现在的概率论公理化体系下面,这个可以作为一个结论推导出来,具体来说,它是大数定理的一个特殊情况。不过如本文标题所说,这次只是闲扯,因为我们目前的进度还没有到大数定理那里,所以就不仔细介绍众多形式的大数定理了,下面只给一个常见的形式,并且暂时省略证明:

概率与测度 (3):概率模型

本文属于概率与测度系列。

系列的前面两篇大致陈述了一下测度论方面的基础,由于这个学期有去旁听《概率论》这门课,所以主要还是按照课程进度来吧,不定期地把课程里一些有意思的内容抽取出来整理在这里。这次就说概率模型。

先从一个例子开始,比如一个盒子里放了 8 个黑球和 2 个白球,从盒子里随机拿一个球,问它是白球的概率是多少,大家都会不假思索地说,1/5 。的确,这似乎是很显然的,不过,实际上我们是用了一个模型来进行概率分析,但是由于这个情况实在太简单了,我们根本就没有注意到模型的存在性,但是换一个稍微简单的例子,要忽略模型“走捷径”有时候就会一下子想不清楚了。比如两个人各掷一个骰子,问 A 得到的点数比 B 大的概率。这个问题就比刚才那个问题要困难一些了。

最早人们在对这类概率问题进行数学抽象的时候,归纳出来的一种模型,现正称为古典概率模型。该模型包由一个包含有限个(设为 $N$)元素的样本空间 $\Omega$ 组成,$\Omega$ 中的每一个元素称为一个基本事件,$\Omega$ 的任意一个子集是一个事件。所有基本事件的概率是相等的,即 $1/N$ ,而任意事件的概率即为该集合的元素个数乘以 $1/N$ ,换句话说:

\[
P(A) = \frac{|A|}{N}
\]

也就是该事件集合的元素个数除以样本空间的总元素个数。对于第一个例子,我们可以这样建立模型:对每一个球编号,一共 1 到 10 号,设 8 号和 9 号是白球,其他的都是黑球,样本空间 $\Omega$ 为 {抽到的是 1 号球、抽到的是 2 号球、……、抽到的是 10 号球} ,而“抽到白球”这个事件集合即 {抽到的是 9 号球、抽到的是 10 号球} ,简单计算立即得到 1/5 的概率。

对于第二个问题,我们用一个 tuple $(x,y)$ 来记两次掷骰子的结果,则整个样本空间集合为 {$(x,y)$, $x=1,\ldots,6$, $y=1,\ldots,6$} 一共 36 […]

拓扑空间的紧性

Klein Bottle

参加暑期讨论班其中有一场是我讲,第一次这样子讲数学的东西,有点紧张,于是先在这里整理一下。内容大致是拓扑空间的紧性。

关于空间的紧性,我们在之前的分析中已经见过了:例如在实数轴上的有界闭区间就是典型的紧集,紧集具有很多优良的性质,比如我们知道在有界闭区间上的连续函数一定是一致连续的,并且能取到最大值和最小值。所以,在将空间的概念推广到一般的拓扑空间之后,我们也希望将紧性这一优良性质也带到拓扑空间中来。为此,我们需要找到什么是紧集最本质的东西。在实数轴上的紧集 $K$,有如下的一些等价刻画:

$K$ 是有界闭集
$K$ 的任意无限子集必存在极限点
$K$ 中的任意序列必有收敛子列
$K$ 的任意开覆盖必有有限子覆盖

其中第一条无法在拓扑空间中使用,因为“有界”的概念无法定义。第二或者第三条曾经被认为是实质性的,但是后来由于 Tychonoff 定理,人们发现最后一条才是真正好的定义,因此将其作为拓扑空间紧性的定义,而第二条和第三条分别被叫做“极限点紧(Limit point compact)”和“序列紧(Sequencially compact)”。下面是正式内容,在给出定义之前,我先给出一个提纲:

首先当然是要给出拓扑空间紧性的定义。
接下来当然是会举一些例子,一方面是把枯燥的定义从抽象中拉回来,另一方面也是非常重要的是给出紧空间的存在性的证据,因为定义总是可以随便给的,这样子我可以给出具有任意优良性质的定义来,然而所定义的东西如果是不存在的话,相关的一切性质其实都是空谈。
然后我们将介绍从已有的紧空间构造新的紧空间的方法:包括集合的交、并、补,以及子空间、商空间和积空间——这一系列都是标准套路。在这里将会出现一个大定理,就是刚才提到的 Tychonoff 定理。
接下来将暂时中断一下,讨论一下稍微具体一点的度量空间中的紧性。因为度量空间更加具体一些,所以能得到的性质也更丰富一些。
最后我们将简要介绍一些将非紧空间(non-compact space)转化为紧空间(compactification,紧化)的初步知识。

啊,不过,由于一次报告是两个人一起讲的,这次我大致负责前半部分,因此从度量空间的紧性开始那部分内容就不列在这里了。

概率与测度 (1):关于测度

本文属于概率与测度系列。

我又来挖坑了。因为打算抽时间(比如下学期或者下下学期)来学一下概率论,所以学习过程中的一些感想或者笔记什么的应该会不定期地整理出来。这算一个开头吧。

其实概率论似乎经常处于一个比较尴尬的地位,在历史上一度被认为并不属于数学的一部分,直到将测度论引入以建立起严格的公理体系之后,才被数学界所承认。当然,说它“不是数学”,仅仅就是字面上的意思,并没有说什么东西不是数学就一定是不好的。事实上,在被严格化之前,概率统计作为一种工具就已经被广泛应用到各个领域中了,当然,在严格的理论体系建立之后,不论从理论上还是应用上,都得到了爆炸性的发展。然而,仅从大学的教育来看,概率论似乎仍然处境尴尬。

比如在 ZJU 本科,似乎概率论是像 C 语言一样的全校必修的一门课(我从来没有搞清楚过学校的选课规则,以前选课大致都是跟风室友的),足见其用途之广泛。然而除了理学院的一些专业之外,其他专业的概率论教学并没有得到近代概率论的严格化所带来的好处。或者说,这样的东西在这样的上下文下原本就是不需要的吧,毕竟对于工科甚至文科的学生来说,概率就是一种工具而已。其实大部分时候都没有什么问题,但是一些模糊的没有良好定义的概念,有时候会带来问题,看看网络上各种流行的概率相关的趣味问题,比如好像有一个问题是说,有三扇门,其中一个后面有奖励,让你任选一扇门,然后主持人打开剩下的两扇中的其中一扇给你看后面没有奖励,然后问你要不要放弃最开始的选择,而选剩下的那一扇门。类似的问题经常会引发大量的争论,大家各执一词,互不相让,许多情况下引起争议的根源都来自于其中有一些“看起来很明显”但是其实并没有经过严格定义的术语的理解的偏差。

另一方面,虽然数学系的概率论课程确实从严格的角度来教授了,但是听我身边认识的数学系的人说来,他们专业的好多人其实都并不对概率论这门课很有兴趣。因为大家选了两门课“概率论”和“实变函数”,然后发现两门课讲的东西差不多是一样的。实分析课上讲测度论,而概率差不多就是一个归一化了的测度,于是大家都有一种“被坑了”的感觉。 ^_^bb